
Gnoseology, Ontology, and the Arrow of Time

MARIO CASTAGNINO* - JUAN JOSÉ SANGUINETI**

Sommario: 1. The philosophical aspect (J.J. Sanguineti). 1.1. The asymmetry of time. 1.2.
Castagnino’s paper on time. 1.3. A philosophical choice. 2. The physical aspects (M.
Castagnino). 2.1. Introduction. 2.2. Observables and states. 2.3. The properties of function
m(x) and the quality of the observables. 2.4. Mixing systems. 2.4.1. The gnoseological school.
2.4.2. The ontological school. 2.5. The Hardy quality. 2.6. The Reichenbach Global System.
2.7. Conclusion.

■

1. The Philosophical Aspect (J.J. Sanguineti)

1.1. The asymmetry of time

The present article on the ‘arrow of time’ is divided into two heterogeneous sec-
tions (the reader may choose which one to read first). In this philosophical section I
intend to present and comment upon the scientific section written by Castagnino, a
physicist who has worked especially in quantum mechanics and quantum cosmologi-
cal models. I will try to provide a philosophical comprehension on the topic, which
implies its introduction in the area of philosophy of nature and philosophy of sci-
ence. A collaboration of this sort is indispensable for certain speculative problems on
the nature of the physical world. Science has not the aim of philosophy, but it gives
some indications that cannot be overlooked by the philosopher of nature. I hope that
the reader in the following pages will understand in a practical way the need of a
mutual relationship between physics and philosophy.

The problem of the direction of time in the physical world is just one aspect of
the general problem of time. It is usually agreed that time, imagined as a line, has a
direction (like an arrow, according to the famous Eddington expression), in the sense
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that it goes from the past to the future and not the other way round. The feeling that
this is the right and necessary direction of time is related to the impossibility of mak-
ing trips to the past, or of stopping the flow of time, and it is incompatible with the
idea that time is a subjective illusion1.

But what does ‘going from the past to the future’ mean? Since time is in some
way reducible to movement and to any kind of alteration, though it is not exactly
equal to them, that expression means at least that some physical evolutions are natu-
rally irreversible. They follow some path and cannot travel in the opposite direction.
A ball can go from A to B and then turn back from B to A, but we have never seen in
nature the inversion of processes like the burning of a sheet transformed in ashes, the
breaking of a glass, and so on. 

Notice that these examples regard a passage from order to disorder (in coinci-
dence with the second principle of thermodynamics), or from unstable physical
states which spontaneously (without any additional cause) tend to an equilibrium
state. Our article deals exclusively with this aspect of the arrow. The direction of
time could also mean a passage from disorder to order, as it happens in evolutionary
processes (but every acquisition of order spends energy and so it obeys the second
principle as well). Furthermore, if the upcoming order is actually new, not produced
by a previous law, then we have a kind of creation, which in human affairs trans-
forms time in history (the historical future is not written in the past).

The future, then, can bring on order or disorder, lawfully or not. Some future
events are repeated, at least in certain features. This implies that we go back to
aspects already seen in the past. A total repetition of everything would amount to a
real return into the past.

We are concerned with what strangely appears as a law of time: events universal-
ly do follow a certain direction towards equilibrium (with less order), i. e. to a more
elementary and more stable order. Generally, the physical laws have nothing to do
with the direction of time. They describe a behavior remaining identical if we
change the direction of time, that is, if we imagine the same process as an inverted
film. Time in physics appears to be, like space, without special directions or perfect-
ly symmetric. The great exception to this symmetry was, since the nineteenth centu-
ry, the second principle of thermodynamics, which apparently showed a natural pref-
erence for some special direction, creating a difference in it which deserves the name
of future and past. But thermodynamics deals with energetic processes and then the
problem becomes universal, since energy is involved in any natural process. What it
is at stake here is the nature of the physical universe. Is it dominated by time or by
an eternal law?
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We will restrict the discussion to physics, without entering the domain of biology
or anthropology. The asymmetry of time may be observed and discussed in different
fields of modern physics. Since it seemingly reveals a fundamental trait of the world,
it is very relevant to philosophy of nature. Any difference raises the question of its
cause. In a rationalist approach, it is more natural to be satisfied with symmetry. A
non eternal law is not a perfect law. If the law changes, we are entitled to ask why,
looking for a higher law2. The course of events assuming a special direction looks
more like a fact than a law, that is, something ‘happens to be’ and so it is expected to
be explained by a superior law. In the late nineteenth century Boltzmann tried to
reduce the aforementioned second principle to microphysics (statistical mechanics).
He concluded that the principle was only probable,  since nothing in theory prevent-
ed the particles to converge in an ordered movement, producing macrophysical
events (mostly improbable) such as the spontaneous reordering of a destroyed build-
ing. The debate was never satisfactorily concluded3.

If within microphysics there would be no temporal direction, but notwithstanding
the arrow does appear at the phenomenological level, the explanation could be that
we observers see an apparent direction in the surface simply because we cannot mea-
sure every particle with an absolute and deep precision. Indeed, the statistical charac-
ter of physics stems from the fact that we cannot deal with every particle but must
content ourselves with a global approach regarding collections.

Hence the idea that the arrow of time in physics is due merely to the process of
an imperfect measurement, which is the thesis of the ‘gnoseological school’ men-
tioned by Castagnino, opposed to the ‘ontological school’, according to which the
direction of time is real (school means here ‘theoretical position’). Boltzmann,
among others, represents the gnoseological approach and Prigogine, in our times, is
the most famous supporter of the ontological character of the anisotropy of time4. If
the distinction of past and future should depend only on our observational and
anthropomorphic approach, then the temporal directions would be analogous to the
spatial directions of up and down, which are such only from our bodily perspective5.
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1.2. Castagnino’s paper on time

I turn now to the scientific treatment, in order to give a more qualitative version
of it which, I hope, may facilitate the reader’s insight into the philosophical core of
the problem. This second section is partly technical, making use of mathematical
language that renders the exposition precise and scientific. But it is obviously related
to problems of philosophy of science and philosophy of nature. For the philosopher,
it is likewise a very perspicuous example of the way in which science accomplishes
its task (it shows the measurement approach of physics and the recourse to mathe-
matical devices such as spaces).

Since the controversy on the direction of time is related to observations recorded
by physical instruments, the first part of Castagnino’s paper regards measurement (n.
2 and 3). He presents a general theory of measurement which, in modern physics,
cannot be but statistical. This theoretical framework has actually arisen in statistical
classical mechanics but is now generalised in quantum mechanics. In this sense it
can deal with any physical event of the universe, with a certain approximation and in
probabilistic terms.

Modern physics is concerned with the description of dynamic evolutions of sys-
tems. The universe is the last system, supposed isolated since by definition there is
nothing outside it. A set of elements belonging to a system (e. g., points, mass-
points, etc.), on having certain geometrical properties, are represented in spaces.
This term does not refer to the ordinary space of our common perception, but it is a
mathematical construction thought of to describe, through a selection of features,
sets of things and their evolution  (represented as lines, surfaces and so on within the
selected space). It is obvious that we are dealing with entia rationis with a founda-
tion in re. The space here is like a window open to the world, with all the limitations
of a window (a partial view).

The physical description lies on some observables i. e. data as seen by the  instru-
ments of measurement. The evolution of the observables produces different states of
the system. They are ruled by the equations (laws), which state the invariant evolv-
ing of the systems according to some parameters. On assigning specific numerical
values to the variables of the equation (e. g. the initial conditions), we obtain its
solution. 

The measure of different observables in a state of the system allows, then, to
measure that state, and even to measure, within limits, the physical state of the uni-
verse (in quantum gravity cosmologies), which is the great system wherein every
other one is a subsystem. The result of the measurement of each observable is
expressed in terms of a density p(x), related to a continuous variable, whose values
are taken e. g. for some subintervals [0, 1] of a length x.

Different qualities of measures are considered, ranging from less to more and
more precision. All these different qualities (Hilbert, coarse-graining, Schwarz, and
Hardy) are associated to different kinds of spaces: Hilbert space H, coarse-graining
space C, etc. The name coarse-graining comes from the precision with which the
space is divided in ‘grains’, like a photograph. This is the typical method employed
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by statistical mechanics (e. g. for the description of a gas). Each space is useful for
some purposes within particular sections in physics, and they are related to each
other by logical inclusion. Beside the space built up from sets of observables (space
of the observables, symbolised as O), there is the corresponding space of states S,
which is a function of the former. Notice that the space of the observables (i. e. the
world as seen by some branch of positive science) is the material or sensible basis of
the scientific network. The space of the states serves to describe the physical evolu-
tion in this world.

The following step copes with the time arrow in the mixing systems (n. 4). They
belong to chaotic systems, whose dynamic behavior is irregular due to their degree
of complexity (they correspond to the real world better than the simple non mixing
systems considered in old classical mechanics). A drop of blue ink diffusing in a
glass of water (a case studied by Gibbs) is a mixing system. Its volume remains the
same but it is homogeneously distributed throughout the water, ending up in an equi-
librium state. The opposite process does not occur in nature. It may be considered as
possible in theory, but it is ‘non physical’, or ‘not physically allowed’. For compari-
son Castagnino uses the famous theoretical example of the baker’s transformation,
in which a quantity of low quality flour (analogous to the ink drop) is distributed
again and again in a bread dough, with the technique of cutting and joining again the
dough many times so as to reduce the low quality flour to ever thinner and thinner
filaments. Remaining the same, this flour, at the end, occupies homogeneously the
whole dough.

The evolution in mixing systems from non-equilibrium to equilibrium is the
motion we observe towards the future. Its spontaneous inversion, from equilibrium
to non-equilibrium, is never seen in nature: an ink drop does not come out sponta-
neously or naturally from a diffused state in the past (notice that these words here,
spontaneous and natural, are crucial for the philosopher of nature). From the situa-
tion of the ink drop concentrated in a point in the water (time=0), if the drop behaves
like the flour in the baker’s transformation, we can go in theory to the future or to the
past, to find out the diffused state of the ink. The film with the ink diffusing (going
from t=0 to the future) or, inversely, with the diffusion forming an ink drop (going
back from t=0 to the past) is the same for the physical laws (and both processes can
be seen one after the other in the theoretical, not real, baker’s transformation). But
only the direction towards the future is really seen in nature6. This is precisely the
problem of the arrow of time. In the following scheme it is easy to visualise what we
are saying (some additions help to understand what will be said later on):
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Castagnino shows two mathematical ways of coping with the process. The
‘gnoseological school’ (see n. 4.1) uses the coarse-graining technique (spaces with
different degrees of coarse graining: the notion of ‘graining the space’ is, obviously,
relative to the observer). The school makes use of the corresponding C space, the
kind of space used in coarse-graining procedures. The evolution of mixing processes
can be explained with this device. It could be said, then, that we see the evolution
towards equilibrium at the infinite future or in the period (the ink diffusing)
because precision is lacking. This amounts to say that, in the case of an infinite pre-
cision, there would be no arrow of time. Entropy would be merely a lack of informa-
tion. I presume that this position is tied to determinism. If everything is determined,
it makes no sense appealing to a difference between past and future. There would be
a mere mechanism and its reversal is perfectly conceivable. 

The space C of the coarse graining method is time symmetric and it is unable to
describe the breaking of time symmetry. It cannot deal with a world with time sym-
metry broken, or with the non physical period (time reversal: going to the
past). It simply  ignores this period.

The ‘ontological school’ (n. 4.2) should use a more accurate observer space
(Schwarz space), whose mathematical properties allow to see the evolution towards
the future and towards the past in a Dirac’s comb (this device includes a representa-
tion of both temporal directions: the ‘horizontal comb’ is the equilibrium in the far
future, while the ‘vertical comb’ is the equilibrium in the far past). The task is now to
choose one of them, namely S- (observer space turned up to the future), with its cor-
responding state space , since this choice fits with the real evolution perceived in
nature. This passage is argued in n. 5. Since the necessary condition of not changing
the space of the observables is not satisfied in the past direction (where ‘non physi-
cal events’ happen), but only towards the future, the recourse to a specific Hardy
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space of the observables is required; in symbols: O- will be (changing the signs
+ and - would mean to change the course of time).

This is not the complete solution of the problem of the time arrow, of course,
being rather a mathematical procedure of dealing with time that more clearly reveals
what it is supposed to be an ontological property of nature. The strategy is remark-
able for a philosopher of science. It shows how the scientist can choose mathemati-
cal instruments which allow scientific constructions to (partially) manifest what
nature is. Undoubtedly, the measure of time is likewise related to man, the author of
measure. Physical time, as seen by science, corresponds to real nature, but it is an
elaboration of human mind as well. Indeed, the arrow of time is perceived from the
spaces of the observer, and that is why Castagnino’s main thesis in this paper is that
the arrow of time is both ontological and gnoseological, since the image of the uni-
verse depends on reality but also on the observer. Our knowledge, as Aquinas would
say, corresponds to the modus essendi but also the modus cognoscendi7. There’s a
nice convergence here between philosophy and science.

The last section (n. 6) is much closer to philosophy. The assumption of a univer-
sal arrow of time, founded on a never contradicted physical experience, involves the
transference to a cosmological model. The simplest one could be the universal global
system proposed by one of the most important contemporary philosophers of time
close to the scientific area, Hans Reichenbach8. The global system, adapted here for
the purpose of the paper, assumes that every branch subsystem begins in a non-equi-
librium state, evolving towards equilibrium (increasing entropy). This branch sub-
system, though relatively isolated, has acquired its improbable initial energetic state
from a previous branch subsystem, and so on. Castagnino relates the process of the
ink diffused in the water to the origin of the elements and particles, ultimately going
back to the origin of the universe. The cosmological global model is adequate even
for the quantum level (microphysics), if we take into account the scattering process-
es. These processes involve the creation of unstable quantum states (unstableness is
the key of irreversible processes and, in general, of the very idea of a cosmic evolu-
tion). The unstable states last either for a brief or a long time or, in other words, they
cause a delay, therefore they produce time. At the end, they decay into a stable state,
where almost nothing occurs.

The arrival to an unstable state is a creative process which ordinarily requires a
preceding source of energy. On the contrary, the consequent decay is natural. The
scattering processes are here analogous to the formation of the ink drop and its diffu-
sion. They have a clear energetic cause (e.g. accelerators of particles). A question
arises regarding the cause of the first unstable state with which the universe starts its
life. If we do not go back further on, it is because there is no past before t=0.
Contemporary quantum cosmology postulates this kind of origin, so the arrow of
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time presents itself as a cosmological direction towards the future9. But even within
classical standards and without the recourse to an initial ‘creation of time’, it is
known that the history of the universe goes back at least to early unstable states.

It could seem then that we are constrained to use the mathematical device of the
O- space of the observer and not its specular image O+ with the inverted time mak-
ing the whole difference. But now there is a surprise. Since in a cosmological model
all the different local arrows of time would have changed at once, going in the oppo-
site sense (including the psychological arrow of the observer, which is a part of the
universe), there is no physical difference (in the scientific meaning of physical)
between the opposite directions of time, just as there are no physical differences
between the pure geometrical directions of right and left. So Castagnino’s conclusion
is that ‘we must choose’ because we are constrained by the facts and not by the laws.
This choice, however, is irrelevant in physics as a science. The choice is supported
by what we have ever seen in the real world, not from the nomological physical
description.

1.3. A philosophical choice

The difference between the gnoseological and the ontological school is philo-
sophical, since there is no empirical constraint from the scientific point of view to
overcome the time-symmetry of the nomological account of physical processes. The
philosophical option in favour of the gnoseological school is more akin with the pos-
itivist attitude. Positivism leads to speak about nature only in scientific terms.
Paradoxically, this approach creates several philosophical problems. In fact, if the
difference between past and future is not physical, the temptation arises of assigning
it to the situation of the observer (just as the right and left directions do change with
the movement of the observer). Giving a special privilege to the observer ends up in
dualism in its rationalistic version.

The ontological school’s option in favour of the reality of the direction of time is
ontological because it acknowledges the existence of a field of reality outside the
framework of mathematical physics. Castagnino argues that there are physical
processes that ‘we have never seen’. This appeal to the facts (in the sense of dismiss-
ing theories concerned with facts we have never seen) is not empiricist or positivist,
but ontological. I hope the reader will understand this subtlety. Positivism restricts its
view to the facts as considered by scientific laws, and in this sense it has no problem
to imagine fictitious facts, never seen, but anyway allowed by the laws. An
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in ibid., pp. 369-389, and our article La creazione nella cosmologia contemporanea, «Acta
Philosophica», 4, 1995, pp. 285-313, for the theological and philosophical problem.



Aristotelian ontology, on the contrary, is built upon reality as such, not upon imagi-
nary or possible reality. 

A merit of Castagnino’s argument is the stress on the philosophical character of
the whole choice. Even the positivistic choice in favour of the purely gnoseological
interpretation of the arrow of time is pretty much philosophical, and it creates the
very difficult philosophical problem of dualism between reality and observer within
the physical description.

The argument that ‘we have never seen those facts’ involves the coincidence
between the psychological and the physical arrow10 (to see an inverted film is to put
the physical arrow in contrast with the psychological arrow). Anthropologically, we
should conclude that our time is rooted in nature. The fictitious inversion of natural
time would imply the independence of our psychological arrow from nature.
Descartes would be right against Aristotle. Of course, we can ‘think’ of the reversal
of a process (since human thought is independent from space-time), but that thought
exists within the real psycho-physical time through which we participate, as physical
observers, in the ontological display of our world.

The points I have commented upon show to which extent some choices of mathe-
matical instruments in physics may be conditioned by philosophical motivations. A
mathematical reading of reality, it is frequently said, is blind to the natural traits of
reality. However, the many different mathematical devices used in the natural sci-
ences may help our mind to get an insight into the ontological structure of reality.
Philosophy is not science, but a philosophical view is not impossible on the basis of
physics11.

2. The Physical Aspects (M. Castagnino)

2.1. Introduction

For those among scientists that believe that Truth must be found in Science as a
whole, and not in any isolated chapter in science, the present situation is highly dis-
couraging. Scientists are so specialized that they ignore completely what is happen-
ing in the neighboring fields of their own speciality. Precisely, philosophers cannot
understand physics, because it is written in mathematical language, and physicists
can not understand philosophy, because it is not written in mathematical language.
The author of this second part is not free from this problem because, with the excep-
tion of a few concepts, he ignores philosophy. Nevertheless, this paper is a modest
attempt to solve this problem, trying to find a physical-philosophical answer to one
of the most important questions of modern physics: the problem of the arrow of time
[1]12. Even if this paper is addressed to philosophers, some high school formulae are
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12 For numbers [1], [2], [3], etc. see the References at the end of the paper.



used, since they are unavoidable. Also, some explanations in the footnotes are devot-
ed to physicists and mathematicians and they can be neglected by philosophical
readers.

The image of the universe depends on the universe itself and on the observer that
looks at the universe and sees its image. This seems an undeniable statement. The
image of the universe is essential, since we can only understand the universe through
the images obtained by the observers. Then in the image of the universe there are
two components:

I.- The universe itself, namely its ontological nature.
II.- The observer that looks at the universe, namely the knowledge or information

that the observer obtains when he studies the universe.
This idea is so convincing that we can extend it from the whole universe to any

part or feature of it: ‘the image of any feature of the universe depends on the feature
itself and on the observer that studies this feature’. We will postulate that this is true
for almost any feature of the universe.

One of the reasons of this paper is precisely to show that this idea is not accepted
by many physicists, and we will demonstrate this fact using the arrow of time, one of
the features of the universe, as an example.

The problem of the existence of the arrow of time or, what is the same thing, the
problem of time asymmetry of the universe, can be formulated asking the following
question [2]:

How can it be that the universe is time-asymmetric if all the relevant physical
laws are time-symmetric?

In fact, the main laws of physics, the Newton laws of mechanics, the Maxwell
equations of electromagnetism, the Einstein  equations of relativity, the Schrödinger
equation of quantum mechanics are time-symmetric13. Nevertheless the universe has
several time asymmetries, namely the various arrows of time: thermodynamic
(entropy grows towards the future), electromagnetic (we use retarded solutions), psy-
chological (we feel that the past is different than the future), etc., that must be
explained. Even if these asymmetries are not contained in the physical laws them-
selves, they nevertheless belong to the object under study: the universe. Then we can
say that these asymmetries are not ‘legal’; they are ‘factual’ or ‘objective’, since they
are asymmetries of the object, but not of the laws that rule the object. Now the asym-
metries of the object can have a gnoseological or an ontological origin. Therefore, to
solve the problem, the physicists are divided into two schools:

1.- The gnoseological school (Boltzmann [4], Zwanzig [5], Zurek [6]). This
school explains the arrow of time saying that it is created by the act of observation, i.
e. by the observer14. Precisely, for this school there is a microscopic universe that is
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ine a mechanism that explains the time asymmetry of the universe based on these laws [3].
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cal argumentation can be found in its authors.



time symmetric and where there are no arrows of time, and there is a macroscopic
universe, the one that macroscopic observers see, where there is one or many arrows
of time, created by our inability to measure the microscopic universe with infinite
accuracy. There is no ontological reason for time asymmetry, according to this
school, since the real universe, the microscopic one, is essentially time symmetric15.

2.- The ontological school. This school states that time asymmetry is an ontologi-
cal characteristic of the universe16. In its extreme version this school refuses any
gnoseological explanation, since it forbids any reference to the measurement proce-
dures to explain the arrow of time (Prigogine and co-workers [9]).

We will try to demonstrate that both schools are wrong (even if they are partially
right), because their reasoning is incomplete and the common sense statement of the
beginning of this section, ‘the image of any feature of the universe depends on the
feature itself and on the observer that studies the feature’, is the clue to solve the
problem. Thus we will try to prove that the arrow of time depends on the universe
and it can be seen only if the observer uses an adequate measurement apparatus.

2.2. Observables and states

Let O be the set (or space, namely a set endowed with certain mathematical prop-
erties) of all the observables (namely all the observation apparatuses, e. g. the appa-
ratus that measures the distance to a certain star) that we will use and S the set (or
space) of all possible states of the universe (e. g. the state of the universe today)17. If
O ∈ Ο is any observable and ρ ∈ S is any state, a measurement is made with the
observable O in the state ρ with a result m (e. g. the distance to the star today). It is
clear that if we measure all the observables of O in a state ρ (precisely all the dis-
tance to all the stars today, the mass of all the stars today, the temperature of all the
stars today, etc.), we do know all the data about ρ and, in this sense, we know the
state of the universe ρ (i. e. the state of the universe today). It must also be clear that
these definitions are completely theoretical, since we are referring to measurements
done with infinite precision, and these measurements are impossible. Real measure-
ments are always affected by some errors. To introduce these errors systematically
we can consider that the universe is only known in a statistical way. So to continue
we must add two important components:

1. Statistics. We know that really modern physics has proved that we cannot
speak about the occurrence of facts but only about the probability of the occurrence
of these facts. Nowadays physics is essentially a statistical science [10]. So the result
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15 The line of thought that explains time asymmetry introducing stochastic noises can be consid-
ered a variation of this school [7].

16 It depends on the solution of the physical laws that describes the present universe and, since we
know the mathematical equations obtained from the physical laws, it depends on the initial con-
ditions of the present universe [8].

17 Really our ‘universe’ can be any closed isolated system within the real universe, and nothing
will change below, since essentially the universe is just a closed isolated system. Nevertheless
we will continue to talk about the ‘universe’ (also because to obtain a complete isolation of a
subsystem of the universe is merely a theoretical fact).



of the measurement is not just m but a set of possible results m1, m2, where we can
only tell the probability of each result p1, p2,... So the best we can have is the mean
value or weighed average of the measurement, precisely

and since the sum of the probabilities is the probability 1 (the certitude), namely
p1+p2... = 1, we obtain:

(1)

where the last symbol is a sum, necessary to avoid the repetition of similar terms like
m1 p1, m2 p2, etc., which we generically call mipi , being i a generic index. So the
symbol Σi means ‘add all the similar terms mipi ‘.

2. Continuous nature of the measurements. Generally the possible measurements
are not a finite or discrete set like m1, m2,... but a continuous one m(x) where instead
of the index i we have the continuous variable x (a discrete set of points is an infinite
set of isolated points; in a continuous set the points are not isolated, but they belong
to a continuous curve, surface, volume, etc.). In fact, let us consider an usual mea-
surement apparatus (a barometer, a thermometer...). x would be the coordinate of the
position of the hand of the barometer (eventually an angle), or the position of the
mercury scale in the thermometer which in fact is continuous, and m the number
written at each position (m HPascal, m degree centigrade...). Then m(x) is the func-
tion that relates the position of the hand with the measured quantity. To simplify let
us suppose that the possible positions of the hand are the points of an interval, let us
say the interval [0,1]. So, in this continuous case, mi is transformed in m(x),[0 ≤ x ≤
1]. Then, what happens with the probability pi?

Each time we deal with continuous objects we are forced to define densities. Let
us imagine a discrete set of points P1, P2,... with masses M1, M2,... that we consider
they are concentrated in each point. The total mass of the set of points is

. Let us now consider a continuous object. It is impossible to know the
mass of each point P since the volume of the point is zero. So we take a small vol-
ume ΔV around the point P, we measure the mass contained in it, ΔΜ, and we define
the density . Then and the total mass of the body is

, where the sum is extended to all the small volume in which we have
divided the body.

In the same way we will define the probability density p(x). For every small
subinterval of [0,1], of length Δx, there is a probability Δp and a density of probabil-
ity: , in such a way that the probability Δp in the subinterval of length
Δx is Δp = p(x)Δx. If the measurement at x is m(x), the generalization of the average
(1) reads:

p(x) = Δp

Δ

M = ΣδΔV
ΔM = δΔVδ = ΔM

ΔV

M = ∑ i M i

< O >ρ = m1p1 + m 2p2 +...= m ipi
i

∑

< O >ρ = m1p1 + m 2p2 +...
p1 + p2 +...
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(2)

where the sum is extended to all the subintervals in which we have divided
[0,1]18. The function m(x) (the set of possible measurements) is a characteristic of
the observable O, while the function p(x) (the probability density of each measure-
ment) is the probabilistic definition of the state r. If we know the probability of each
possible measurement of a state of the universe, we know the probabilistic state of
the universe. This is the statistical translation of the previous definition (see the
beginning of n. 2), when we use infinitely exact measurements: ‘It is clear that if we
measure all the observables of O of an state r (...) we do know all the data about r
and, in this sense, we know the state of the universe r’.

Let us finish this section saying that, even if we were referring to the classical
level, all what we have said can be rephrased in the quantum level. This will be also
the case for all the reasoning below.

2.3. The properties of function m(x) and the quality of the observables

Now we reach the central point of the paper: the mathematical properties of the
characteristic function of the observables m(x). We will see that the properties of the
observables, used by the two schools, are different and therefore these properties are
the basis to define and study both schools.

The mathematical properties of the function m(x) will define the quality of the
observable O. Heuristically, if the function m(x) is defined in a fuzzy way, we will
say that the quality of the observable is bad. On the other hand, if it is defined in a
precise way, we will say that the quality of the observable is good. Consider again
the barometers hand and the number of HPascal written in the scale. If the positions
of the hand are correlated in a fuzzy way with the numbers of the scale, clearly the
barometer is of bad quality. If they are correlated in a precise way, the quality of the
barometer is good. As we have said, for simplicity, we will consider that the index x
takes only values between zero and one, [i. e. 0 ≤ x ≤ 1]. We will give several exam-
ples of decreasing fussiness of the curve m(x) and therefore several examples of
growing quality:

1.- Hilbert quality. The function m(x) is a square integrable. To give an intuitive
idea of this kind of functions we can consider that they are continuous functions
(like the curves we can draw in a paper with a pencil) where, in a discrete number of
points, the values of the function are different than those corresponding to the con-
tinuous one. I. e. discrete number of points are subtracted from the continuous func-

< O >ρ = ∑ m(x)p(x)Δx
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18 To make the sum as refined as possible we take Δx → 0, i. e. we make Δx as small as possible.
Then, in the limit of infinitesimal interval the mathematician would say that the summatory of
the last equation must be substituted by an integral, namely the mathematical generalization of
sum to the case where the number of addends is infinite. Then we obtain:

< O >ρ = limΔ x→0
∑ m(x)p(x)Δx = m(x)p(x)dx

0

1

∫



tion and they are elsewhere (fig. 1)19. The function can also have a stair shape with
jumps or steps (like figure 1´ and also as the curves of the next quality), but for sim-
plicity, let us keep in mind the image of fig. 1. As we will see, Hilbert quality is a
very bad one since the curves of figs. 1 and 1´ are quite fuzzy. We will call the space
of these functions the Hilbert space H.

2.- Coarse-graining quality (we will explain the origin of the name ‘coarse-grain-
ing’ in the next section). Let us divide the interval [0,1] in subintervals [0,x1].[x1,
x2],... [xn, 1] ant let m(x) take continuous values in each subinterval. The function
m(x) looks like a stair, with curve steps, going up and down (fig. 2), with jumps in
the points xi, when we pass from one step to another one. This curve is not so fuzzy
as the previous one. Therefore the quality is improved, as we will see below in a less
intuitive way. We will call the space of these functions the ‘coarse-graining’ space C.
The gnoseological school uses this quality, because it is sufficient to prove a large set
of important results, the growing of entropy, the natural tendency to equilibrium, etc.
We will discuss this point further in the next section.

3.- Schwarz quality. The function m(x) is continuous, differentiable to any order,
and square integrable, namely it is a completely smooth curve endowed with a lot of
nice properties (fig. 3). The quality is improved. The corresponding function space is
the Schwarz space S.

4.- Hardy quality. The function m(x) has all the properties of a Schwarz function
plus other mathematical properties known as analyticity in the upper or lower com-
plex half-plane (namely more involved mathematical properties that we will not
explain in detail [11]). This is the finest quality we will consider. The corresponding
function space will be called the Hardy space from above, (which has analytic
properties in the upper complex half-plane) or from below, , (corresponding to
the lower complex half-plane), respectively20.

Even if we cannot here explain this quality in all details, we are forced to intro-
duce it, since the ontological school is based on this quality.

The only thing the reader should keep in mind is that there is a hierarchy of quali-
ties and that the higher quality corresponds to a higher number of mathematical
properties of the curve m(x) that makes it less fuzzy and better defined.

To see how this definition of quality of measurement corresponds to the intuitive
notion, let us use as an example the simplest probabilistic distribution. Let us sup-

H2
H 2
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19 In a more precise language a mathematician would say that all the curves, obtained by the con-
tinuous one by the subtraction of a discrete number of points, are equivalent and that the space in
consideration is the space of the corresponding equivalent classes.

20 The essential property is that m(x) can be expanded as a power series as:

and, if the real variable x is promoted to a complex one z, m(z) is an analytic function in the
upper complex half-plane, in the case of , or analytic in the lower half-plane, in the case of

. These properties are used by physicists to deduce the ‘dispersion relation’ [12] and also the
‘fluctuation-dissipation theorem’ [7]. In these cases physicists are working with the same basis
as the ontological school.

H2
H 2

m(x) = m 0 + m1x + m 2x
2 +...



pose that we are sure that in the interval [0,1] we measure a fix number e. g.: .
This state of knowledge corresponds to what is called the d or Dirac’s state ρD,
defined as the state with a probability function pD(x), which is zero everywhere, in
the interval [0,1], but different from zero at x = (fig. 4), since we know that all the
probability is concentrated in 21. We use this state for two reasons:

I. It is the simplest of all.
II. We will see in the next section that we must add infinite Dirac’s states to

obtain a ‘Dirac’s comb’, an extremely useful state.
Let us now compute the average (2) for an arbitrary curve m(x) in Dirac’s state

pD(x). Let us divide the interval [0,1] in small subintervals of equal length Δx. As
p(x) is zero in all intervals but the one that contains , the sum (2) will be reduced
to just the addend m(x)pD(x)Δx that contains the coordinate x = . Namely:

Now we can refine the result making Δx smaller and smaller, a process that we sym-
bolize as Δx→0 (and we can take in such a way that, when Δx→0, 
grows up to infinite, representing the infinite concentration of the probability at x = ).

Then, as the small subinterval always contains , the final result of the average
(2) will be 22.

Let us see how this state of the universe is measured by the different qualities of
functions, i. e. how the different qualities measure m( ):

1.- Hilbert quality. If the point x = is not one of the subtracted points from the
continuous curve, we know the value m( ). But in the other case this value is
unknown (fig. 5). That is why the Hilbert quality is so low.

2. Coarse-graining quality. If the point x = is not one of the point xi, we know
the value m( ). In the other case, if x = = xi and corresponds to the value of the
jump between two steps, we do not know the value of m ( ), but we do know that
this value is contained between the value m1 and m2 of the two steps (fig. 5´). So the
quality is improved.

3.- Schwarz quality. Now m(x) is a nice curve with no jumps or discontinuities,
so we know m( ) for sure (fig. 5´´). The quality is further improved.

4.- Hardy quality. As we have not explained the mathematical notion of analytici-
ty, we cannot tell why we reach the maximum quality. But as we know that when the
properties of the function are more numerous the quality improves, and this is the
case for the Hardy quality, we can easily understand that here the quality will be
improved aswell.

So we see that as quality grows the value of m( ) becomes better known.1

1
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22 A mathematician would say: < 0 >ρ = m(x)δ (x − 1
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We will close this section with some results about the inclusion of the spaces that
we have defined. It can be mathematically proved that, as the quality improves, the
corresponding space becomes smaller, i. e.:

(3)

This fact corresponds with common sense: more accurate measurement appara-
tuses are less numerous. Moreover, if we request a new mathematical property to a
set of functions, the subset of functions endowed with the property is contained in
the original set.

According to the quality of our observable space O, we can measure our state
space S better or worse. So, for each quality of the observers space we can measure a
different space of states. Thus the space of states we can consider depends on the
space of observables we use. Then we will say that the space of states is a functional
space (or a dual space) of the space of observables [14] and we will write this
dependence as:

(4)

Let us observe that there is an intimate relation between the spaces O and S, in
such a way that it can be proved that if one is time-symmetric the other is also time-
symmetric, and if one is time-asymmetric the other is also time-asymmetric.

Clearly as the quality of the space of observables improves, the corresponding
space gets smaller but, on the other hand, the quantity of measurement increases and
therefore the number of of the measured space states increases as well:

or 

From this equation and eq. (3) we obtain23:

(5)Hx ⊂ Cx ⊂ Sx ⊂ H±
2 x

S2 ⊂ S1O1 ⊂  O2 ⇔ O2
x ⊂ O1

x

S = Ox

H±
2 ⊂ S ⊂ C ⊂ H
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23 The Hilbert space has a characteristic property, known as Riesz theorem: it is equal (precisely
isomorphic) to its dual:

So in the worst quality case the space of observables is equal to the space of states. In all the
other cases the space of observables is contained in the space of states, since from the last equa-
tion and eqs. (3), (5) we have:

In this equation we see, very clearly, how the refinement of the measurement quality increases
the state space. Any triplet , , , is known as a Gel’fand triplet
[13] or a rigged Hilbert space [11].

C ⊂ H ⊂ CxS ⊂ H ⊂ SxH±
x ⊂ H ⊂ H±

2x

H±
2 ⊂ S ⊂ C ⊂ H = Hx ⊂ Cx ⊂ Sx ⊂ H±

2 x

H = H x



2.4. Mixing systems

The arrow of time does not appear in simple systems. They must have some
degree of complexity in order that this arrow may appear. In this section we will study
the case of classical system, namely non quantum system, where this complexity is
called ‘chaos’. There are different chaos degrees, and we will be interested in the mix-
ing chaos. In fact, this property serves to guarantee the approach of the system to an
equilibrium state, which is one of the ways to define the arrow of time. Every physi-
cal (mixing) system has a natural tendency to go to an equilibrium final state. Chaos,
most likely with mixing properties, is very frequent in mechanical systems. As we
will see a (Gibbs) drop of ink spreading in a glass of water, a sugar lump solving in
the coffee or an open bottle of perfume diffusing the perfume in the room are all mix-
ing systems. All these motions reach a final homogeneous state of equilibrium. In this
final state the percentage of ink, sugar or perfume is homogeneous in the correspond-
ing container (glass, cup or room). This is the definition of mixing evolution: it is an
evolution that homogenizes any initial inhomogeneity, in such a way that if this inho-
mogeneity is the ink drop, this ink will reach a final equilibrium state where it is
homogeneously mixed with the water. There is a natural tendency to homogeneous
equilibrium through this mixing process, as the examples above show.

A very important and popular mathematical analogue of mixing transformation is
the so called ‘baker’s transformation’ that operates in the square space X=1 1 (or
[0,1] [0,1]) and it is defined by the following procedure:

I.- Take a square dough of dimensions 1 1 (fig. 6).
II.- Squeeze the 1 1 square to a 2 1/2 rectangle, as the baker does with the

dough.
III.- Cut the rectangle vertically into 2 rectangles and
IV.- Pile them up to form another 1 1 rectangle.
Then repeat this procedure again and again24. The transformation is shown in fig.

6´ (as we will see), where in the first square is the configuration corresponding to the
time=0.

Much more complicated mixing evolutions than the baker’s transformation can
be invented. In fact, the baker’s transformation is the simplest of all: it is the sim-
plest model of the famous Gibbs ink drop. Gibbs tried to explain the essence of irre-
versibility with the ink drop model. If a drop of blue ink is introduced in a glass of
water, even if the volume of the ink drop remains constant, we will have, after a
while, an homogeneous mixture of bluish water. As we have said, this is the typical
final equilibrium state of every mixing evolution. What happens is that the motion of
the water is mixing and therefore the ink drop is deformed (even if its volume is con-
stant) in such a way that it is transformed in a set of very thin filaments that are pre-
sent in every part of the water, giving the sensation that the water has become bluish.

×

××
×

×
×

Mario Castagnino - Juan José Sanguineti

251

24 A mathematician would say that in doing so the points of the square will move as:

at each step.
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The growing of this filaments-like structure gives an arrow of time and for Gibbs it
is the essence of the direction of the arrow of time.

Now this phenomenon is nicely modelled by the baker’s transformation. In fact,
let us consider a small rectangle a b within the square 1 1 (fig. 6´), let us say a
small stain of low quality flour within the dough (that corresponds to the ink drop).
The height of the stain will successively become: 1/2b, 1/4b,... 1/tb while the base of
the stain will become: 2a, 4a,...ta,... in such a way that the area is conserved.
Eventually a time will arrive such that ta > 1 and then the stain will be cut in two,
and then in four, eight, etc., and at the end it will become a set of horizontal fila-
ments of increasing length and decreasing height (last square of fig. 6´), namely a
‘cubist’ picture of the ink drop. So the baker’s transformation is just a model of the
ink drop phenomenon.

If now that we are acquainted with the baker’s transformation model, we consider
again the much more complicated evolution of the ink drop, we see that the fila-
ments also exist in this motion, even if they are produced with a much more complex
geometry (not a cubist one), but with the same essential property: the ‘height’ of the
filaments decreases, and they become thinner, and the ‘length’ of the filament grows
and they become longer. It is clear that the motion of usual water is mixing, accord-
ing to our definition, as the baker’s transformation is. In fact, if the volume of the ink
drop is the 1% of the volume of the water, and if the motion is mixing, in the far
future every subset will have a 1% of ink and, therefore, the distribution of ink will
become homogeneous. As this is the case with the real ink drop, we can conclude
that the real motion is mixing.

Going back to fig. 6´, if the shaded a b would correspond to the stain of lower
quality flour (the analogue of the ink drop), and in this case this flour will fill the 1%
of the square [0,1] [0,1], it is evident that in the far future any subset of the square,
like A, will have a 1% of the low quality flour (even if at t=0 there was not a trace of
bad quality flour in A, fig. 6´). Therefore the baker’s transformation is also mixing
and, as we have said, it is just a model of the ink drop in the glass of water.

But now, for a change, let us consider the evolution towards the past. Let us ask
ourselves where the lower quality flour comes from. Going to the past we have the
inverse evolution for a b, and b will become 2b, 4b,...tb,... while a will become
1/2a, 1/4a,...1/ta,..., in such a way that towards the past the height grows and the
length decreases. In the far past we will have a set of vertical bands (first square of
fig. 6´´). Everything we have said about the evolution towards the future can be
repeated with the simple substitution of the horizontal direction by the vertical direc-
tion and vice versa. Clearly there is not an essential ontological difference between
horizontal and vertical directions. So we will have the behavior just described also
towards the past. Also the subset A will have the 1% of lower quality flour towards
the past  (fig. 6´´). Then the theoretical baker’s transformation does not break the
past-future symmetry, since we see that the past evolution (before t=0) is similar to
the future evolution (after t=0). But the real ink drop does it, since nobody has ever
seen an homogeneous mixture of ink and water where the ink concentrates sponta-
neously in such a way to produce an ink drop (which corresponds to the past evolu-

×
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tion of the baker’s transformation before t=0). For the ink drop this part of the evolu-
tion is physically impossible. So the baker’s transformation is a good mathematical
model of the ink drop towards the future of t=0, but not towards the past. Let us keep
this idea in our minds.

Now, in order to make contact with the measurement process studied in the last
two sections, let us consider the fate when t → ∞ of any subset, namely any low
quality flour stain in baker’s transformation. The horizontal strata will become a set
of infinite horizontal straight lines towards the future (fig. 6´´´) (known as a horizon-
tal Dirac’s comb, since the density of the bad quality flour is concentrated in these
lines and zero elsewhere, like in the Dirac’s d distribution). Towards the past the set
of vertical bands will become a set of infinite vertical lines (known as a vertical
Dirac’s comb for the same reason) in the limit t → - ∞ (fig. 6´´´´). These sets of infi-
nite lines are a superposition of infinite Dirac’s distributions d and they are not the
usual low quality flour stains (or ink drops) but idealized generalizations of these
stains or drops in the limit of infinite time. Of course, nobody has ever seen these
infinite lines. What we really see is the glass of water becoming uniformly bluish or
the flour acquiring an uniform quality. From this point on the two schools follow dif-
ferent paths that we will now explain.

2.4.1. The gnoseological school

This school postulates that, as we cannot see with infinite precision, we have a
coarse-grained image of the universe, coarse-grained as a photography where the
grains of the paper have different colors and, even if they have finite size, they create
the illusion of a continuous image because, being the grains so small, we cannot see
each one of them individually. Therefore, according to this school, any perception of
the measurement must be done considering a set of grains g, of small size ε, such
that we cannot measure a smaller length. Then we must average the probability p(x)
over each grain and content ourselves to use this averaged probability (x). If we
want to give a mathematical definition of this idea, we must use functions from the
space C. Precisely those which have the following property:

they are zero everywhere but their value is one in just one subinterval of [0,1] of
size ε < 1, that we will call the grain g

Such curve will be called the characteristic curve (fig. 7) of the grain g and sym-
bolized by χ(g) (see the mathematical explanation in the footnote25). So coarse-

ƒp
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25 If we make the average (2) of a probability p(x) using one of these curves we obtain:

where the g under the first sum means that we add only in the grain g (i. e. the subinterval of size
ε); in the second sum m(x) disappears because it is equal to 1 in the grain g, and the symbol in
the r. h. s. is the average of p(x) in the grain g. Now if we divide the interval [0,1] in grains gi of
size ε, we  can define a coarse-graining probability as

(x) = χ(gi) < p(x) > gi
ƒp

< 0 >ρ = p(x )m (x )Δx = p(x )Δx =< p(x ) >g
g
∑

g
∑



graining school is based on functions of quality C. Precisely a set of curves like
those of fig 7´.

Let us now go back to the baker’s transformation and let us consider a character-
istic surface, namely a surface obtained by the multiplication of two characteristic
curves in both axis x and y. So in the square [0,1] [0,1] the function defined by this
characteristic surface is the one of a grain, namely equal to one in the small square
ε ε, and zero elsewhere (fig. 7´´). Now we can generalize the average (2) to the
two dimensional case: we can consider a probability p(x,y) and define the coarse-
graining probability (x,y), namely a function where we have substituted the aver-
age of the probability p(x,y)  in each grain. In the case of the baker’s transformation
this procedure will give the average of ink or bad flour in each grain. Going back to
the beginning of this section, it is evident that the small squares ε ε are equivalent
to the ‘grains’ of a photography, so ε is the minimal precision that we can use, mea-
sure or see.

Then using the curves C we have created observers that measure the average prob-
ability density (x, y), and a observers space of coarse grain quality Cx for the x axis
and Cy for the y axis. Then the observer space can be called C = Cx ⊗ Cy. For sim-
plicity we have made the length ε equal in both axis, since physically ε is the smallest
precision we can measure or see. Then, when time grows, and it goes up to t → +∞,
and the horizontal strata become smaller than ε, it is quite obvious that the average
probability density (x, y) becomes a constant and, if the mean value refers to the
color of the water or to the mean quality of the flour, we will obtain a constant (pre-
cisely 1% for the above examples), which means that we will see homogeneous
bluish water or bread dough. Thus the gnoseological school really explains the physi-
cal phenomenon. It is our incapacity to measure with an infinite precision the fact that
produces the final homogeneous equilibrium state and therefore the arrow of time. On
the other hand, following this line the gnoseological school explains much more
involved and complex phenomena, like the growing of entropy, as we have said. This
entropy grows up to a maximum value when equilibrium is obtained as it should be.
In fact, in many respects the gnoseological school is completely satisfactory [15].

The problem is that if we go towards the past, up to t → −∞, the same thing hap-
pens. When the vertical bands become smaller than ε, we have an homogeneous
equilibrium state (with also a maximum of entropy). Then considering the whole
process from -∞ to +∞, we go from equilibrium to a state out of equilibrium at t=0
and towards equilibrium again at +∞. Nobody saw this process as a whole, which is
equivalent to the concentration of the ink, in a glass where ink and water are homo-
geneously mixed, to form an ink drop at time t=0 and then to be diffused in the water
again. But everybody has seen the second part of it. So coarse-graining applied to a
time-symmetric evolution that makes no difference between past and future does not
break the time-symmetry and it cannot be the whole story. It only explains the arrow
of time from t=0 to t → ∞, namely a partial arrow of time. It does not explain the
global arrow of time, from t → −∞ to t → ∞, since both sides of the evolution are
symmetric with respect to t=0. In other words, as the space C is time symmetric it
cannot break a time symmetric evolution.
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2.4.2. The ontological school

Usually the quality of measurement used in almost all physical theories is Hilbert
quality. Then the observers space in the case of the baker’s transformation would be

. With this quality we cannot see the Dirac’s distributions, and therefore
we cannot see the Dirac’s combs. But the ontological school would like to see, e. g.
the horizontal Dirac’s comb, namely those that really appear when t → ∞ (and do not
appear when t → −∞). Then it must use another observers space: 
because the Schwarz quality in the vertical direction allows us to see this horizontal
comb measured by Sy (the vertical comb of the far past cannot be seen, since it is
measured by Hx, a quality that does not see the combs). The corresponding space will
be , that actually contains the horizontal combs. Then if really the space of physi-
cal states has this property, it includes an ontological characteristic, that fixes the
equilibrium towards the future, where there is the horizontal comb, but not towards
the past since the vertical comb is not contained in the space .

Of course we can choose as observers space and as states space 
and we will have the reverse properties: we will have equilibrium towards the past
and see the vertical Dirac’s comb that appears when t → −∞, since the time inversion
of the horizontal comb gives the vertical comb. This is not the ontological property
of the real universe, but the above one, if we postulate that the physical states belong
to space and not to space (we will say more in section 6). The time-symme-
try of the baker’s transformation is broken by the ontological school using time
asymmetric observers contained in the space or, which is the same thing, time-
asymmetric states contained in the space .

This structure is developed with success in paper [16]. As we now have equilibri-
um towards the future, as it is actually the case, and we can consider this equilibrium
in all details, since it is contained in space , we could conclude that the ontologi-
cal school is superior to the gnoseological one. Somehow it is so, but our analysis
shows that it is not purely ontological, since the observers, namely the observation
apparatuses, have also an important role in this school, which therefore is not free
from a gnoseological component26.

2.5. The Hardy quality

The baker’s transformation is just a didactic example. Therefore the spaces S-

S−
x

S−
x

S−

S+
xS−

x

S+
x

S+ = Sx ⊗ Hy

S−
x

Sx

S− = Hx ⊗ Sy

H = Hx ⊗ Hy
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26 In baker’s transformation the time inversion T is equivalent to change the vertical and the hori-
zontal directions. So the following equations are valid for the observers space:

These equations define a duality [17]. Thus even if the evolution of the baker’s transformation is
time-symmetric, it is complex enough to allow the appearance of this dual structure, which turns
out to be an essential feature to define time asymmetry in the ontological theories. We have also
a duality in the state spaces:
S−

x ≠ S+
x ,T:S−

x → S+
x

S− ≠ S+ ,T:S− → S+



and S+ are also didactic examples. Can we find a physical reliable principle to fix the
observers space in a unique way? To do so we must find a condition that the
observers space must fulfil if we consider their time evolution. So we must consider
how the observables evolve with time27. Then a logical property to ask to the
observers space is that it must be the same when we go towards the future. In fact,
the criterion to choose the physical observables cannot change when we go towards
the future. Think of a film of an elephant breaking a glass-shop. The camera is the
measurement apparatus28. We will see that the elephant breaks the glasses, the
shelves, and the furniture, going from one state that we can consider physical to
another state that we also consider physical, i. e. performing a physical evolution.
This will also happen with the ink drop diffused in the water, but in a less spectacu-
lar way. As the criterion we use to say that we are seeing the picture in the right
direction is the same for all times, therefore we have a first condition:

1.- The space of the observables must be such that any observable should always
be contained in this space when it evolves towards the future29.

In this sense the space O- is stable towards the future. But this is not a necessary
condition towards the past. In fact, if we see the film in the reverse  direction, we see
non-physical events happening: glasses being reconstructed by the elephant motion
(or the ink drop contracting in the glass of water), etc. So, if we go towards the past,
the criterion to choose physical observables have changed and we have another con-
dition:

2.- Condition 1 is not necessary towards the past30.
In this sense the space O- is unstable towards the past and this is the asymmetry

that generates the features we are looking for.
Then essentially from a Beurling theorem [18], [19], [20], [21], we know that

conditions 1 and 2 are satisfied if and only if:

O- (6)

where q = eiϕ is a phase (a complex number of modulus one) and is the Hardy
class function (from above) space31. We can disregard the phase q since it can be

H +
2

= qH+
2
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27 There is a time-evolution operator, which we will call eiLt, that transforms the operator O(0), at
time t = 0, into the operator O(t) at time t. Then the law of the observables evolution towards the
future is: O(t) = eiLt O(0), where the O are the observables (considered as matrices), t>0 and L is
the so called Liouville operator, while towards the past the last equation reads:
O(-t)=eiL (-t)O(0).

28 The measurement apparatuses measure not only position but also velocities. Then the analogy of
the film is eloquent but not complete. In fact, we must rather think that each photography of the
film also contains information about the velocities (or what we are really considering, as the
state at each time is a pair of two successive photographs).

29 Namely eiLtO- ⊂ O-, if t > 0, i. e. an admissible observable remains admissible all along the time
evolution towards the future.

30 Namely eiLtO- ⊄ O-, if t < 0, i. e. the property 1 is not valid towards the past.
31 Really O- = = [ (R,N)]. For the sake of physicists and mathematicians we add that the

variable n ∈ R is the eigenvalue of the Liouville operator, and N is an auxiliary space that con-
tains all the necessary variables to describe the considered model.

H +
2H +

2



proved that it is irrelevant [22]. So we conclude that our space of physical observ-
ables is:

(7)

Thus we reach the conclusion that the quality motivated in these physical reasons
is Hardy quality.

Therefore, even if the usual physical apparatuses belong to the quality C, there
must be some other physical entities (time asymmetric observables) that perceive the
difference between and , e. g. ourselves, since we feel that the past is not the
future. Moreover, the time-symmetric apparatuses of quality C do not feel this differ-
ence since they do not satisfy the property 2. Essentially these measurement appara-
tuses do not perceive the distinction between past and future but only the direction
non-equilibrium → equilibrium, even if, as in the first part of the baker’s transforma-
tion evolution (from -∞ to 0), the equilibrium is in the past and the non-equilibrium
is in the future.

Of course if in all this reasoning we change the roles of past and future we will
obtain:

so we have the couple , ,32 as in the preceding section we had the didactic
couple , . It is clear that, if we deal with a close system (e.g.: the universe),
the choice of one of the members of these couples in order to settle the ontological
property that defines the arrow of time is conventional. So someone may say that the
arbitrary choice of one the members of the couples is made ‘by hand’. It is not so. To
prove it we will discuss this problem further on the next section.

2.6. The Reichenbach Global System

The arrow of time cannot be a local concept. We have both practical and theoreti-
cal reasons that support this statement. i.- From the practical point of view, we have
studied very far sections of the universe and we have always used the same physics
with the same arrow of time. If the arrow of time would be different in a very far
quasar, we would perceive this difference since, e. g., the elementary particles would
decay in a different time direction. ii.- From the theoretical point of view we can
make the following reasoning: we could conceive two isolated laboratories with dif-
ferent arrows of time, but this fact has never been observed [23]. So, it is conceiv-
able that, given two researchers working in two isolated laboratories, one of them
chooses the observables of , while the other chooses the observables of .O+O−

S+S−

O+O−

O+ = H−
2

H +
2H−

2

O− = H+
2
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32 We have here another duality since:

and
O−

x ≠ O+
x ,T:O−

x → O+
x

O− ≠ O+ ,T:O− → O+



Namely they choose different arrows of time. These two researchers will be very
confused when the isolation ceases and they get in contact, since then they will real-
ize that they have different arrows of time. So, to study this problem we must adopt a
global view or, what is the same thing, a cosmological model and the simplest of all
is the Global System of Reichenbach [24], [25], [23]. In this model every irre-
versible process (produced in local subsystems or ‘branch systems’) begins in an
unstable state originated, not in a very unlikely fluctuation, but in an unstable state
created by the energy coming from other irreversible processes. E. g., the famous
Gibbs ink drop in the glass of water was originated in an ink factory, where unstable
coal was burned in an oven to extract energy. Coal was originated in geological ages
using the energy of the light coming from the sun, where unstable H was burned, and
the energy necessary to create H comes from the unstable initial state of the uni-
verse, the origin and source of energy of the whole global system. We can represent
this global system at the classical level by fig. 8. To introduce our formalism we
must go to the statistical level. The easiest thing to do is to go to the quantum level
(which is essentially statistical) and to use quantum language. So let us consider a
usual scattering process (fig. 9), namely the collision of atoms, nuclei or elementary
particles, where some particles coming from an accelerator a1, a2,... (fig. 9) hit a tar-
get at time t=0, and are transformed and scattered by the collision in outgoing parti-
cles b1, b2,... Let us cut this process at time t=0 [11] into a creation of unstable states
process (fig. 10), similar to the theoretical contraction of the ink drop, where the
solutions a1, a2,... are incoming ones, and a decaying of unstable states process (fig.
11), similar to the real diffusion of the ink drop, where the solutions b1, b2,... are out-
going ones. This last process corresponds to states in the space that naturally
decay into an equilibrium state at t → ∞ with a growing entropy. On the contrary the
created states correspond to space (contraction of the ink drop). Actually
this space is not realized in the real physical world as such (there is no spontaneous
contraction of the ink drop), because before t=0 the system is not just the scattering
one, but a more complete one, that includes the acceleration apparatus and the source
of energy (like the one of the dotted box ‘B’ of fig. 12). This is the reason why we
have used just the O- observers, as explained in the previous sections. We cannot use
the diagram of fig. 10 because, during the creation process, the system does not exist
as such (actually it is a much more complex system, e. g. the ink factory with its
oven burning coal). The system really begins to exist at time t=0 (namely the isolat-
ed glass of water with the ink drop) and therefore it is only described by the diagram
of fig. 11. So really only the second part of the baker’s transformation (from 0 to ∞)
does exist. That is why you never see the ink concentrating spontaneously in the
glass of water. But in the second part of the evolution the past → future direction
coincides with the non-equilibrium → equilibrium direction, the arrow of time of the
apparatuses of quality C coinciding with the one of the apparatuses of quality , so
you can use either one kind or the other. Then you can employ with confidence the
usual apparatuses of quality C, which are the real ones since they have a finite accu-
racy. Also, as the results obtained with the two kinds of quality C and coincide,
there is no physical reason to choose between the gnoseological and the ontological

H2

H−
2

O+
x = S+

O x = S
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school. There is not a cross-experiment that would prove that one school is right and
the other is wrong. Therefore: the difference between the two schools is just philo-
sophical. This is the reason why this paper is addressed to philosophers. Actually the
evolution of the universe can be symbolized as a sequence of states in local

spaces, as shown in fig. 12, interchanging energy among themselves, and
all of them co-ordinated because their energy comes from the unique unstable initial
state, namely the cut box in the far left of fig. 12. The whole process can be
described using just a global space (as in the simple cosmological
process of ref. [26]). Fig. 12 can be considered the quantum or statistical image of
classical Reichenbach global system of fig. 8. As fig. 12 corresponds to , its
specular image corresponds to the time inverted space (fig. 13). 

But the physics choosing is identical to the physics choosing , because,
as there is nothing exterior to the universe, nobody can tell the difference. In fact, all
the arrows of time are contained in the object , so when we change this space by
the time-inverted object , all the arrows of time change.

Then choosing either or , we would obtain the same time-asymmetric
physics with a growing entropy when we go from the initial unstable state in what
we will call ‘the past’, to the equilibrium final state in what we will call ‘the future’.
A realistic model of the universe is thus obtained. Time-asymmetry is not obtained
as an asymmetry of the laws of nature but as an asymmetry of the object under
study: precisely the apparatuses measuring the universe which are contained in space

. Then it is a factual and not a legal asymmetry, as announced. This argument
also proves that we have not put the arrow of time ‘by hand’ choosing , this
choice being physically irrelevant, since the same physics is obtained if we choose

. But the choice must be made, and then an ontological property appears and
defines the arrow of time.

2.7. Conclusion

We have concluded that the difference between the two schools is philosophical.
So we can ask: Has the arrow of time a gnoseological or an ontological origin? We
would say that it is ontological, since the object under study, the space of measure-
ment apparatuses, has the ontological property of being of quality and  it is,
therefore, asymmetric (this time asymmetry in the measurement apparatuses will
obviously produce the same time asymmetry in the space of states measured by these
apparatuses, as explained under eq. (4)). But the arrow is gnoseological too, since we
are referring to measurement apparatuses, namely devices to get information. From
this point on the research must be continued by the philosophers.
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Figures

Fig. 1. A square integrable function with no jumps. Fig 1´. A square integrable
function.  Fig. 2. A “coarse-graining” curve.  Fig. 3. A Schwarz curve.  Fig. 4. A
Dirac’s distribution.  Fig. 5. m( ) measured by a H curve.  Fig. 5´. m( ) measured
by a C curve.  Fig. 5´´. m( ) measured by a S curve.  Fig. 6. Baker’s transforma-
tion.  Fig. 6´. The fate of the flour stain towards the future.  Fig. 6´´. The fate of the
flour stain towards the past.  Fig. 6´´´. The fate of the flour at t → ∞.  Fig. 6´´´´. The
fate of the flour at t → −∞.  Fig. 7. A characteristic curve in the interval [0,1].  Fig.
7´. The coarse-grained curve.  Fig. 7´´. A characteristic surface in [0,1] [0,1].  Fig.
8. Classical Reichenbach diagram.  Fig. 9. Scattering process.  Fig. 10. Creation
process.  Fig. 11. Decay process.  Fig. 12. Bohm-Reichenbach diagram.  Fig. 13. The
inversion of fig. 12.
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Abstract: L’articolo affronta il problema della direzione del tempo fisico in una
prospettiva interdisciplinare tra la filosofia e la scienza sperimentale. Nella parte
scientifica, M. Castagnino imposta la questione dal punto di vista di una teoria della
misurazione inerente alla metodologia della fisica, in rapporto specialmente ai siste-
mi dinamici complessi, nei quali si manifesta l’asimmetria temporale. Dall’analisi di
due approcci, gnoseologico e ontologico, si conclude che la freccia del tempo della
fisica, nei livelli considerati, contiene una mediazione gnoseologica ma anche un
elemento ontologico. Nella parte filosofica, J.J. Sanguineti presenta in modo quali-
tativo il contenuto della sezione scientifica e sottolinea il ruolo di certe scelte filoso-
fiche nel campo scientifico, tenendo conto però della differenza tra l’impostazione
realista e positivista.
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